# An Experimental Research in Understanding Culinary Mathematical Chemistry.

Dr. Vinay Pandit Mathematics and Statistics Department Lala Lajpatrai College <u>drvinaypandit@lalacollege.edu.in</u>

### Abstract:

**Culinary is** related to cooking. It is an art of preparation, cooking and presentation of food, usually in the form of meals. This research provides an overview of the application of Mathematical Chemistry in Culinary and examines the results of the analyses performed in the completion of this study. The purpose of this study was to investigate which variables influence the output of the recipes by culinary chefs with respect to acidic end product or alkali end product. Data were collected and relationships among the variables were investigated by means of bivariate correlations and linear regression using the Statistical Package for the Social Sciences (PSPP) which gave the different PH value.

### **1.0 Introduction**

**Culinary Art**, is an art of cooking, preparation, and presentation of food, usually in the form of end product which are termed as meals. Person working in this sector/ field are commonly known as "chefs" or "cooks", or "culinary artist" or "culinarian". This also includes Table manners or the table arts which are also known as culinary art.

Chefs do quite merely mix ingredients to create delicious meals. Indeed, an excellent cook has a lot of in common with mathematicians and scientists, as Boston Magazine noted. Thoughchefs aren't breaking down Pi or findingan associate degree of energy crisis, they still have confidence on key scientific rules or principles to perform their task or job. As much as cooking is about passion and feelings, it's conjointly concerning adhering to many key logical ideas.

In making these recipes it is noted that while adding the ingredients it is found that the end product which is made by chefs may have high level of pH level or low level of pH

ISSN: 0474-9030

Vol-68-Issue-1-Janaury-2020

level. Thus, culinary mathematical chemistry gives us its great contribution for the better health of the society.

## 1.2pH Scale



## 1.6 Need for Study

Thus, there is a need to study the field of culinary in relation to science. The systematic approach of how Mathematical Chemistry is used in this field can be studied and analysed in relation to its pH value.

## 2.0 Research Methodology

## 2.1 Research Problem

The research problem focuses in understanding the application of Mathematics in the field of Culinary and how the mathematics concept enhances the recipes of the chefs. Thus, an attempt is made by the researcher to analyse the culinary Mathematical Chemistry.

## 2.2 Objective of Study

To Study the Applied Mathematical Chemistry in culinary field in relation to PH level.

## 2.3 Scope of Study

The scope of the current study is restricted to only two recipes. Also, the scope is restricted to observations under controlled environment.

## 2.4 Sampling Design

Researcher has followed simple random sampling method to collect the data using experimental method which comprises of limited sample size.

## 2.5 Research Design

Page | 10309

The research design deployed by the researcher is Exploratory, Experimental and Descriptive as well.

### 2.6 Research Approach

The research approach used by the research is deductive in nature.

## 2.7 Mathematical and Statistical Techniques

Curve Fitting and Correlation and Regression test was used to do data analysis so as to reach at the concrete conclusion.

### 2.8 Hypothesis Formulation

The following Hypothesis was considered based on the objective of study.

Ho: Moisture Content and pH level are not correlated with **Black Tea**.

H1: Moisture Content and pH level are correlated with Black Tea.

Ho: Moisture Content and pH level are not correlated with Soda Bicarbonate.

H1: Moisture Content and pH level are correlated with Soda Bicarbonate.

Ho: Moisture Content and pH level are not correlated with Soda Bicarbonate and Tea Bag(Powder).

H1: Moisture Content and pH level are correlated with Soda Bicarbonate and Tea Bag(Powder).

## 2.9 Limitation of Study

1)The heat and moisture transfer are one dimension.

2) The study confines to the only fewbranches of Science namely Mathematics and Chemistry.

3) Time is the major Limitation.

4) Experimental observation was under control condition.

5) Chickpeas and kidney beans were considered to be almost spHerical object.

Page | 10310

Vol-68-Issue-1-Janaury-2020

6) Chickpeas and kidney beanswere considered as a homogeneous isotropic solid.

## **3.0 Data Analysis and Findings**

For the Analysis, the data was collected from the experiment conducted in control condition using Soda Bicarbonate, Tea Bag (Powder) and Both together to study the pH level of the food prepared.

| Pulses          |                | Variable         |                         |                           |             |  |
|-----------------|----------------|------------------|-------------------------|---------------------------|-------------|--|
|                 | Quantity /Kg   | Moisture Content | Specific<br>Heat(k1/%c) | <b>Density</b> $(kg/m^3)$ | pH<br>level |  |
| Chickpeas       | 1 tea spoon    | 9.78             | 1.376                   | 1050.44                   | 4.5         |  |
| Kidney<br>beans | 1.5 tea spoons | 13.20            | 1.580                   | 1390.05                   | 5           |  |

| Table | 3.1 | With | Tea | Bag   |
|-------|-----|------|-----|-------|
|       |     |      |     | ~ ~ 8 |

**Source: Experimental Observations** 

Ho: Moisture Content and pH level are not correlated with **Black Tea**.

H1: Moisture Content and pH level are correlated with **Black Tea**.

Table 3.2 Correlations

|                  |                     | Moisture_Content | pH_Level |
|------------------|---------------------|------------------|----------|
| Moisture_Content | Pearson Correlation | 1                | 1.000**  |
|                  | Sig. (2-tailed)     |                  |          |
|                  | Ν                   | 2                | 2        |
| pH_Level         | Pearson Correlation | 1.000**          | 1        |
|                  | Sig. (2-tailed)     |                  |          |
|                  | Ν                   | 2                | 2        |

Source: SPSS\*\*. Correlation is significant at the 0.01 level (2-ailed).

## Findings:

Moisture Content and pH level are correlated with **Black Tea**. Further there is perfect positive correlation between Moisture Content and pH level. And this correlation is significant at 1% LOS. This means if we use **Black Tea**to boil chick peas and beans it

ISSN: 0474-9030

will certainly black but its pH level will increase too. Thus, leading to non-Alkaline or Acidic which is not advisable for a healthy diet.

| Pulses          | Variable     |                                                                        |             |            |       |  |
|-----------------|--------------|------------------------------------------------------------------------|-------------|------------|-------|--|
|                 | Quantity /Kg | Kg         Moisture Content         Specific         Density         P |             |            |       |  |
|                 |              | (% w.b.)                                                               | Heat(kJ/⁰c) | $(kg/m^3)$ | level |  |
| Chickpeas       | 2 tea bags   | 10.11                                                                  | 1.859       | 1284.20    | 8.5   |  |
| Kidney<br>beans | 3 tea bags   | 15.60                                                                  | 2.145       | 1405.50    | 9     |  |

| Table 3.3 | With | Soda | Bicarbonate |
|-----------|------|------|-------------|
|           |      |      |             |

**Source: Experimental Observations** 

Ho: Moisture Content and pH level are not correlated with Soda Bicarbonate.

H1: Moisture Content and pH level are correlated with Soda Bicarbonate.

|                  |                     | Moisture_Content | PH_Level |
|------------------|---------------------|------------------|----------|
| Moisture_Content | Pearson Correlation | 1                | 1.000**  |
|                  | Sig. (2-tailed)     |                  |          |
|                  | Ν                   | 2                | 2        |
| PH_Level         | Pearson Correlation | 1.000**          | 1        |
|                  | Sig. (2-tailed)     |                  |          |
|                  | Ν                   | 2                | 2        |

Table 3.4 Correlations

Source: SPSS\*\*. Correlation is significant at the 0.01 level (2-tailed).

### **Findings:**

Moisture Content and pH level are correlated with **Soda Bicarbonate**. Further there is perfect positive correlation between Moisture Content and pH level. And this correlation is significant at 1% LOS. This means if we use **Soda Bicarbonate** to boil chick peas and beans it will certainly take less time to boil but its pH level will increase. Thus, leading to Alkaline or Non-Acidic which is advisable for a healthy diet.

ISSN: 0474-9030

| Pulses    |                 | Variable        |                        |                         |                                 |             |  |
|-----------|-----------------|-----------------|------------------------|-------------------------|---------------------------------|-------------|--|
|           | Quantity<br>/Kg | Quantity<br>/Kg | Moisture<br>Content (% | Specific<br>Heat(kJ/ºc) | Density<br>(kg/m <sup>3</sup> ) | pH<br>level |  |
|           |                 |                 | <b>w.b.</b> )          |                         |                                 |             |  |
| Chickpeas | 1 tea spoon     | 2 tea bags      | 19.60                  | 1.364                   | 1600.06                         | 7.01        |  |
| Kidney    | 2 tea           | 3 tea bags      | 28.50                  | 1.232                   | 1809.80                         | 7.002       |  |
| beans     | spoons          |                 |                        |                         |                                 |             |  |

#### Table 3.5 With Soda Bicarbonate and Tea Bag(Powder)

**Source: Experimental Observations** 

Ho: Moisture Content and pH level are not correlated with Soda Bicarbonate and Tea Bag(Powder).

H1: Moisture Content and pH level are correlated with Soda Bicarbonate and Tea Bag(Powder).

|                  |                     | Moisture_Content | PH_Level |
|------------------|---------------------|------------------|----------|
| Moisture_Content | Pearson Correlation | 1                | 1.000**  |
|                  | Sig. (2-tailed)     |                  |          |
|                  | Ν                   | 2                | 2        |
| PH_Level         | Pearson Correlation | 1.000**          | 1        |
|                  | Sig. (2-tailed)     |                  |          |
|                  | Ν                   | 2                | 2        |

 Table 3.6 Correlations

Source: SPSS\*\*. Correlation is significant at the 0.01 level (2-tailed).

#### **Findings:**

Moisture Content and pH level are correlated with **Black TeaandSoda Bicarbonate**. Further there is perfect positive correlation between Moisture Content and pH level. And this correlation is significant at 1% LOS. This means if we use **Black TeaandSoda Bicarbonate** to boil chick peas and beans it will certainly take less time to boil and its pH

Vol-68-Issue-1-Janaury-2020

level will be approximately 7. Thus, leading to neutral which is advisable for a healthy diet.

## 3.1 Analysis of moisture content in relation with Density with Curve Fitting

| 3.1.1 Model Description                           |             |  |  |  |
|---------------------------------------------------|-------------|--|--|--|
| Model Name                                        | MOD_1       |  |  |  |
| Dependent Variable 1                              | Moisture    |  |  |  |
| Equation 1                                        | Cubic       |  |  |  |
| Independent Variable                              | Density     |  |  |  |
| Constant                                          | Included    |  |  |  |
| Variable Whose Values Label Observations in Plots | Unspecified |  |  |  |
| Tolerance for Entering Terms in Equations         | .0001       |  |  |  |

Source: SPSS

#### 3.1.2 Model Summary

|      |          | Adjusted R | Std. Error of the |
|------|----------|------------|-------------------|
| R    | R Square | Square     | Estimate          |
| .989 | .979     | .964       | 1.335             |

Source: SPSS

### 3.1.3 ANOVA

| -          | Sum of Squares | df | Mean Square | F      | Sig. |
|------------|----------------|----|-------------|--------|------|
| Regression | 245.139        | 2  | 122.569     | 68.760 | .003 |
| Residual   | 5.348          | 3  | 1.783       |        |      |
| Total      | 250.486        | 5  |             |        |      |

Source: SPSS

ISSN: 0474-9030

Vol-68-Issue-1-Janaury-2020



#### Source: SPSS

The prediction equation (Model) for predicting the moisture content in relation to Density is given by the cubic equation  $Y = 22.183 + 7.254 \times 10^{-9} x^3 - 0.020 x$ 

The above equation was tested at 5% LOS for its prediction ability. It was found that p value is 0.03 which is less then 0.05, therefore the above equation is significant for prediction of moisture if the sheaf wants to cook concentrating on the density of the chick peas.

## 3.2 Analysis of moisture content in relation with Density with Curve Fitting

|                           | -              | Variables             |    |
|---------------------------|----------------|-----------------------|----|
|                           |                | Dependent Independent |    |
|                           |                | Moisture              | pН |
| Number of Positive Values | -              | 6                     | 6  |
| Number of Zeros           |                | 0                     | 0  |
| Number of Negative Values |                | 0                     | 0  |
| Number of Missing Values  | User-Missing   | 0                     | 0  |
|                           | System-Missing | 0                     | 0  |

| 3.2.1 | Variable | Processing | Summary |
|-------|----------|------------|---------|
|-------|----------|------------|---------|

#### Source: SPSS

ISSN: 0474-9030

Vol-68-Issue-1-Janaury-2020

|      | 3.2.2 N  | Nodel Summary |                   |
|------|----------|---------------|-------------------|
|      |          | Adjusted R    | Std. Error of the |
| R    | R Square | Square        | Estimate          |
| .781 | .609     | .349          | 5.712             |

Source: SPSS

|            | Sum of Squares | df | Mean Square | F     | Sig. |
|------------|----------------|----|-------------|-------|------|
| Regression | 152.604        | 2  | 76.302      | 2.339 | .244 |
| Residual   | 97.883         | 3  | 32.628      |       |      |
| Total      | 250.486        | 5  |             |       |      |

3.2.3 ANOVA

Source: SPSS



### Source: SPSS

The prediction equation (Model) for predicting the moisture content in relation to pH is given by  $y = -89.893 + 32.821x - 2.393x^2 + 0x^3$ 

The above equation was tested at 5% LOS for its prediction ability. It was found that p value is 0.244 which is more than 0.05, therefore the above equation is not significant for prediction of moisture if the sheaf wants to cook concentrating on the pH level.

### 4.0 Conclusion and Suggestions

### 4.1 Conclusion

From the analysis done in chapter 3 the researcher has made an attempt to find out the moisture level, pH level and density of chick peas while making a recipe using tea powder, soda bicarbonate and both. The result revealed that while using tea power in many recipes

Page | 10316

specifically in chickpeas, the end product is acidic in nature while using soda bicarbonate is alkali in nature. But when both are used end product is neutral. This signifies that the recipes which we make depends on the ingredients which are used by chefs. As the end product whatever it maybe, it should be alkali rather than acidic. Thus, the culinary person should have the knowledge of retaining the pH level to alkali or neutral with the same taste. If these precautions are taken in this industry, this will be a great contribution towards health of people.

## 4.2 Suggestions

At individual level one should consume alkali food rather than acidic food. Few of them are listed below.

| Most Alkaline                                                                              | Alkaline                                                                                           | Lowest<br>Alkaline                                                                              | FOOD<br>CATEGORY               | Lowest Acid                                                     | Acid                                                                         | Most Acid                                           |
|--------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|--------------------------------|-----------------------------------------------------------------|------------------------------------------------------------------------------|-----------------------------------------------------|
| Stevia                                                                                     | Maple Syrup,<br>Rice Syrup                                                                         | Raw Honey,<br>Raw Sugar                                                                         | SWEETENERS                     | Processed<br>Honey,<br>Molasses                                 | White Sugar,<br>Brown Sugar                                                  | NutraSweet,<br>Equal,<br>Aspartame,<br>Sweet 'N Low |
| Lemons,<br>Watermelon,<br>Limes,<br>Grapefruit,<br>Mangoes,<br>Papayas                     | Dates, Figs,<br>Melons,<br>Grapes,<br>Papaya, Kiwi,<br>Blueberries,<br>Apples, Pears,<br>Raisins   | Oranges,<br>Bananas,<br>Cherries,<br>Pineapple,<br>Peaches,<br>Avocados                         | FRUITS                         | Plums,<br>Processed<br>Fruit Juices                             | Sour<br>Cherries,<br>Rhubarb                                                 | Blackberries,<br>Cranberries,<br>Prunes             |
| Asparagus,<br>Onions,<br>Vegetable<br>Juices, Parsley,<br>Raw Spinach,<br>Broccoli, Garlic | Okra, Squash,<br>Green Beans,<br>Beets, Celery,<br>Lettuce,<br>Zucchini,<br>Sweet Potato,<br>Carob | Carrots,<br>Tomatoes,<br>Fresh Corn,<br>Mushrooms,<br>Cabbage,<br>Peas, Potato<br>Skins, Olives | BEANS<br>VEGETABLES<br>LEGUMES | Cooked<br>Spinach,<br>Kidney<br>Beans,<br>String Beans          | Potatoes<br>(without<br>skins), Pinto<br>Beans, Navy<br>Beans, Lima<br>Beans | Chocolate                                           |
|                                                                                            | Almonds                                                                                            | Chestnuts                                                                                       | NUTS SEEDS                     | Pumpkin<br>Seeds,<br>Sunflower<br>Seeds                         | Pecans,<br>Cashews                                                           | Peanuts,<br>Walnuts                                 |
| Olive Oil                                                                                  | Flax Seed Oil                                                                                      | Canola Oil                                                                                      | OILS                           | Corn Oil                                                        |                                                                              |                                                     |
|                                                                                            |                                                                                                    | Amaranth,<br>Millet, Wild<br>Rice, Quinoa                                                       | GRAINS<br>CEREALS              | Sprouted<br>Wheat<br>Bread,<br>Spelt,<br>Brown Rice             | White Rice,<br>Corn,<br>Buckwheat,<br>Oats, Rye                              | Wheat, White<br>Flour,<br>Pastries, Pasta           |
| l                                                                                          |                                                                                                    |                                                                                                 | MEATS                          | Venison,<br>Cold Water<br>Fish                                  | Turkey,<br>Chicken,<br>Lamb                                                  | Beef, Pork,<br>Shellfish                            |
|                                                                                            | Breast Milk                                                                                        | Goat Milk,<br>Goat Cheese,<br>Whey                                                              | EGGS DAIRY                     | Eggs,<br>Butter,<br>Yogurt,<br>Buttermilk,<br>Cottage<br>Cheese | Raw Milk                                                                     | Cheese,<br>Homogenized<br>Milk, Ice<br>Cream        |
| Herb Teas,<br>Lemon Water                                                                  | Green Tea                                                                                          | Ginger Tea                                                                                      | BEVERAGES                      | Теа                                                             | Coffee                                                                       | Beer, Soft<br>Drinks                                |

#### Source: www.indiahomeclub.com

Note that a food's acid or alkaline-forming tendency in the body has nothing to do with the actual pH of the food itself. For example, lemons are very acidic, however the end-products they produce after digestion and assimilation are alkaline so lemons are alkaline-forming in the body. Likewise, meat will test alkaline before digestion but it leaves acidic residue in the body so, like nearly all animal products, meat is classified as acid-forming.

The following food pH charts below provide some more insight into which foods are alkaline and which are acid. Each food is assigned a number which represents it's approximate relative potential of acidity (-) or alkalinity (+) present in one ounce of food. The higher the number, the better it is for you to eat.

| Very Alkalin<br>Eat More | e                     | Mildly Acidi<br>Eat sparingl | c<br>Y         | Very Acidic<br>Eat Less or Av | oid   |
|--------------------------|-----------------------|------------------------------|----------------|-------------------------------|-------|
| Vegetables               |                       | Fruits                       |                | Root Vegetables               |       |
| Brussels Sprouts         | +0.5                  | (In Season, For Cle          | ansing         | Stored Potatoes               | + 2.0 |
| Peas, Ripe               | + 0.5                 | Only Or With<br>Moderation   |                | Meat, Poultry, And            | Fish  |
| Asparagus                | + 1.3                 | Rose Hins                    | -15.5          | Pork                          | -38.0 |
| Comfrey                  | + 1.5                 | Rose mps<br>Pineapple        | -13.5          | Veal                          | -35.0 |
| Cabbage, Green           | + 2.0                 | Mandarin Orango              | -12.0          | Beef                          | -34.5 |
| Cabbage, White           | + 3.3                 | Rananna Pina                 | -11.5          | Ocean Fish                    | -20.0 |
| Lamb's Lettuce           | + 4.8                 | Dananna, Kipe                | -10.1          | Chicken                       | -18.0 |
| Peas, Fresh              | + 5.1                 | Peal                         | -9.9           | Eggs                          | -22.0 |
| Zucchini                 | + 5.7                 | Apricat                      | - 9.7          | Oysters                       | - 5.0 |
| Cabbage, Red             | + 6.3                 | Apricot                      | - 9.5          | Liver                         | - 3.0 |
| Rhubarb Stalks           | + 6.3                 | Papaya                       | - 9.4          | Organ Meats                   | - 3.0 |
| Leeks (Bulbs)            | + 7.2                 | Mango                        | - 9.2<br>8 7   | Milk And Milk Pro             | ducts |
| Watercress               | + 7.7                 | Tangarina                    | - 0.7          | Hard Cheese                   | -18.1 |
| Spinach                  | +10.0                 | Current                      | - 0.5          | Quark                         | -17.3 |
| Chives                   | + 8.3                 | Currant<br>Goosabarry Pina   | - 0.2<br>7 7   | Cream                         | - 3.9 |
| French Green Beans       | +11.2                 | Grope Pipe                   | - 1.1          | Homogenized Milk              | - 1.0 |
| Sorrel                   | +11.5                 | Cranbarry                    | - 7.0          | Buttermilk                    | + 1.3 |
| Garlic                   | +13.2                 | Rlack Current                | - 7.0          | Bread, Biscuits (Sto          | ored  |
| Celery                   | +13.3                 | Strowborry                   | - 0.1          | Grains/Risen Doug             | h)    |
| Cabbage Lettuce,         | <i>⊥</i> 1 <i>1</i> 1 | Blueborry                    | - J.4<br>5 3   | White Bread                   | -10.0 |
| Fresh                    | 1 1 7.1               | Ducterry                     | - J.J<br>5 1   | White Biscuit                 | - 6.5 |
| Endive, Fresh            | +14.5                 | Nasuelly<br>Vallow Dhum      | - 3.1          | Whole-Meal Bread              | - 6.5 |
| Cayenne Pepper           | +18.8                 | Italian Plum                 | - 4.9<br>- 4.9 | Whole-Grain Bread             | - 4.5 |

Page | 10318

Copyright © 2019Authors

ISSN: 0474-9030

Vol-68-Issue-1-Janaury-2020

| Straw Grass            | +21.4     | Date              | -4.7  | Rye Bread            | - 2.5  |
|------------------------|-----------|-------------------|-------|----------------------|--------|
| Shave Grass            | +21.7     | Cherry, Sweet     | - 3.6 | Nuts                 |        |
| Dog Grass              | +22.6     | Cantaloupe        | - 2.5 | Pistachios           | - 16.6 |
| Dandelion              | +22.7     | Red Currant       | - 2.4 | Peanuts              | -12.8  |
| Kamut Grass            | +27.6     | Fig Juice Powder  | - 2.4 | Cashews              | - 9.3  |
| Barley Grass           | +28.1     | Grapefruit        | - 1.7 | Fats                 |        |
| Sprouted Radish        | +28.4     | Watermelon        | - 1.0 | Margarine            | - 7.5  |
| Seeds                  | 120.4     | Coconut, Fresh    | +0.5  | Corn Oil             | - 6.5  |
| Alfalfa Grass          | +29.3     | Cherry, Sour      | + 3.5 | Butter               | - 3.9  |
| Cucumber, Fresh        | +31.5     | Bananna, Unripe   | +4.8  | Sweets               |        |
| Wheat Grass            | +33.8     | Fish              |       | Artificial Sweetners | -26.5  |
| Tomato                 | +13.6     | Fresh Water Fish  | -11.8 | Chocolate            | -24.6  |
| <b>Root Vegetables</b> |           | Non-Stored Grains | 5     | White Sugar          | -17.6  |
| White Raddish          | + 3.1     | Brown Rice        | -12.5 | Beet Sugar           | -15.1  |
| Rutabaga               | + 3.1     | Wheat             | -10.1 | Molasses             | -14.6  |
| Kohlrabi               | + 5.1     | Nuts              |       | Dried Sugar Cane     | 18.0   |
| Horseradish            | + 6.8     | Walnuts           | - 8.0 | Juice                | -16.0  |
| Turnip                 | + 8.0     | Macadamia Nuts    | - 3.2 | Sucanat              | - 9.6  |
| Carrot                 | + 9.5     | Hazelnuts         | - 2.0 | Barley Malt Syrup    | - 9.3  |
| Beet                   | +11.3     | Fats              |       | Fructose             | - 9.5  |
| Red Radish             | +16.7     | Sunflower Oil     | - 6.7 | Milk Sugar           | - 9.4  |
| Black Radish           | +39.4     | Coconut Milk      | - 1.5 | Turbinado Sugar      | - 9.5  |
| Fruits                 |           |                   |       | Brown Rice Syrup     | - 8.7  |
| Limes                  | + 8.2     |                   |       | Honey                | - 7.6  |
| Fresh Lemon            | + 9.9     |                   |       | Condiments           |        |
| Avocado (Protein)      | +15.6     |                   |       | Ketchup              | -12.4  |
| Non-Stored Organi      | ic        |                   |       | Mayonaise            | -12.5  |
| Grains And Legum       | nes       |                   |       | Mustard              | -19.2  |
| Buckwheat Groats       | + 0.5     |                   |       | Vinegar              | -39.4  |
| Spelt                  | + 0.5     |                   |       | Beverages            |        |
| Lentils                | + 0.6     |                   |       | Liquor               | -38.7  |
| Lima Beans             | +12.0     |                   |       | Wine                 | -16.4  |
| White Beans            | +12.1     |                   |       | Beer                 | -26.8  |
| (Navy Beans)           | 1 1 2 . 1 |                   |       | Coffee               | -25.1  |
| Nuts                   |           |                   |       | Fruit Juice,         | 07     |
| Brazil Nuts            | +0.5      |                   |       | Packaged, Natural    | - ð./  |
| Almonds                | + 3.6     |                   |       | Fruit Juice          | -33.6  |
| Seeds                  |           |                   |       | Sweetened With       | 55.0   |

Page | 10319

Copyright © 2019Authors

ISSN: 0474-9030

Vol-68-Issue-1-Janaury-2020

| Sesame Seeds            | + 0.5     |
|-------------------------|-----------|
| Cumin Seeds             | + 1.1     |
| Fennel Seeds            | + 1.3     |
| Flax Seeds              | + 1.3     |
| Caraway Seeds           | + 2.3     |
| Sunflower Seeds         | + 5.4     |
| Pumpkin Seeds           | + 5.6     |
| Wheat Kernel            | +11.4     |
| Fats (Fresh, Cold-      | Pressed   |
| Oils)                   |           |
| Olive Oil               | + 1.0     |
| Borage Oil              | + 3.2     |
| Flax Seed Oil           | + 3.5     |
| Evening Primrose<br>Oil | + 4.1     |
| Marine Lipids           | + 4.7     |
| Water                   |           |
| Coconut Water           | +<br>9.04 |

## Source: "Back to The House of Health" by Shelley Redford Young

### **5.0 References**

- Beal, Eileen. Choosing a career in the restaurant industry. New York: Rosen Pub. Group, 1997.
- Cooking Schools 101." Cooking Schools. N.p., n.d. Web. 17 Sept. 2013.
- Institute for Research. Careers and jobs in the restaurant business: jobs, management, ownership. Chicago: The Institute, 1977.
- "History of Culinary Arts." Culinary Arts Information RSS. N.p., web. 17 Sept.2013.
- "The Culinary Timeline." The Culinary Timeline. N.p., web. 17 Sept. 2013.
- http://www.indiahomeclub.com/interesting\_articles/ia\_pH\_list\_of\_acid\_alkaline\_foods.p
   Hp.