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ABSTRACT 

 Difference labelings of a graph C are acknowledged by appointing unmistakable whole 

number qualities to every vertex and afterward connecting with each edge the supreme 

distinction of those qualities doled out to its end vertices. A decomposition of a labeled graph 

into parts, each part containing the edges having a typical weight is known as a typical weight 

decomposition. Right now explore the presence of labelings for cycles, cartesian result of two 

graphs, rn-crystals, rectangular matrices and n-solid shapes which deteriorate these graphs into 

indicated parts. We likewise examine the comparing issue for added substance labelings. 

KEYWORDS: Libeling’s, Decompositions, Difference Graphs, substance labeling. 

INTRODUCTION 

 A graph with a distinction labeling characterized on it is known as a labeled graph. A 

decomposition of a labeled graph into parts, each part containing the edges having a typical 



Our Heritage  
ISSN: 0474-9030 

Vol-68-Issue-1-January-2020 

P a g e  | 12482 Copyright ⓒ 2020Authors 

 

weight is called basic weight decomposition. A typical weight decomposition of G in which each 

part contains rn edges is called rn-fair.  

A timberland wherein every segment is a way is known as a direct woods. Blossom and Ruiz 

[13] share demonstrated that each part for all intents and purpose weight decomposition is a 

direct timberland and the vertices of least and most extreme mark are not interior vertices in any 

way of a section containing it. Right now consider the accompanying issue given in [13]. 

Let C = (V E) be a graph. A distinction labeling of C is an infusion f from V to the set of non-

negative numbers together with the weight function f on E given by f*(uv) = f(u) - f(v)I for each 

edge uv E.  

Specified Parts Decomposition Problem. Given a graph C with edge set E(C) and an 

assortment of edge-disjoint straight woods F1, F2,...,Fk containing a sum of JEJ edges, does there 

exist a typical weight decomposition of C whose parts are individually isomorphic to F1 , F2,..., 

Fk?  

We get normal weight decompositions into determined parts for cycles, cartesian item G1 x C2 of 

two graphs C1 and C2 , rn-crystals Cm x P, rectangular matrices Pm X P and for n-shapes Q. We 

likewise talk about the comparing issue for added substance labelings. 

Theorem 4.1. A labeling exists for every cycle with ns edges  which decomposes it into n 

copies of sP2. 
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Case (ii) s is even. 

Define a labeling f as follows. 
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In both cases the labeling f defined above realizes a decomposition of  into n copies of  

A common-weight decomposition of an even cycle into two immaculate matching's. In the 

accompanying theorem we get a comparative outcome for odd cycles. 

Theorem 1.1. There is a labeling of the odd cycle  which decomposes it into one 

maximum matching and  

 

decomposes  into a maximum matching and  
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Theorem 1.2.let C* be the graph gotten from C by appending a way of length n - 1 to every 

vertex of C. In the event that G has a typical weight decomposition into k parts C1, C2,. . . , Gk, at 

that point the graph C* has a typical weight decomposition into C1, C2,.. . , Gk and mP where m 

is the number of vertices of C. 

 

Let f be the labeling realizing a decomposition of C into C1, G2... Gk. Then the labeling g on G* 

defined by 

 

realizes a common-weight decomposition of G* into  and  

Theorem 1.3. If a connected graph  has common-weight decomposition into m1 linear forests 

 and a connected graph  has a common-weight decomposition into m2 linear 

forests  has a common-weight decomposition into m1 + m2 linear 

forests  
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First we prove that h is .injective. 

 

 

 

 

Then right hand side of (1) is zero and hence . From the definition of 

 which is not possible since g is injective. Hence h is 

injective and it can be easily verified that h realizes a common-weight decomposition of 
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Corollary 1.4. A labeling exists for the prism and  which 

decomposes it into two perfect matchings and  

Corollary 1.5. There is a labeling of the prism , realizing a decomposition of 

 are 

relatively prime. 

Corollary 1.6. There is a labeling of the rectangular grid alizing a decomposition o 

 

Corollary 1.7. There is a labeling realizing a common-weight decomposition of Q into n perfect 

matchings. 

Proof. From Theorem 4.4, if C has common-weight decomposition into ri perfect matching’s 

then C x K2 has a common-weight decomposition into n + 1 perfect matching’s. Since 

 the result follows. 

Corollary 1.8. equitable. 

Remark 1.1. The common-weight decompositions given in Corollaries are actually 

factorizations and the decomposition given in Corollary is a 1-factorization. 

Theorem 1.1. Let C be an associated graph of greatest degree 3 and breadth d where d>1. At that 

point C can't have a common weight decomposition where all the segment ways in each part 

have length more noteworthy than d. 

Proof. Suppose there exists a labeling f on C which deteriorates G into parts in which the 

entirety of the segment ways in each part have length more noteworthy than d. Leave it and v 

alone the vertices of least and most extreme labels separately. 
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Let  be a most limited u-v way. By 

Theorem 1.39 u and v are not interior vertices in any way of a section containing it. Since each 

way in any piece of the decomposition is of length more prominent than d, P can't be 

remembered for one section. Presently let Qi be the way of the part containing the edge uoui in 

the common-weight decomposition. Let S indicate the set of all edges of P not secured by Qi. 

Since A < 3, the subgraph actuated by the set of all edges in S contains in any event one way say 

 such that P1 is not included in one part 

of the decomposition and  are not inward vertices in any way of a section 

containing it. By proceeding with this procedure we acquire an edge UmUm+1 in P to such an 

extent that this edge is excluded from any piece of the common-weight decomposition, which is 

an inconsistency. 

Theorem 1.2. There exists a labeling which realizes a common-weight decomposition of the 

Kronecker product  into two copies of 
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Hence the theorem. 

CONCLUSION 

 A graph G is a limited nonempty set of items assembled vertices with a lot of unordered 

pairs of distinct vertices of G which is called edges indicated by V (G) and E (G), individually. 

On the off chance that e = {u, v} is an edge, we compose e = uv; we state that e joins the vertices 

u and v; u and v are neighboring vertices; u and v are occurrence with e. On the off chance that 

two vertices are not joined, at that point we state that they are non-adjoining. In the event that 

two distinct edges are episode with a typical vertex, at that point they are said to be contiguous 

one another.  A graph G comprises of a limited nonempty set V of vertices together with a set E, 

disjoint from V whose components are unordered pairs of distinct vertices of V. Every 

component e = { u, v } of E is called an edge of G, and e is said to join u and v. We compose e = 

uv and state that u and v are the parts of the bargains are occurrence with e. They are likewise 
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called neighboring vertices; edges which are episode with a typical vertex are called adjoining 

edges. A graph with p vertices and q edges is known as a (p, q) graph. An edge whose finishes 

are indistinguishable is known as a circle and edges having similar end vertices are called 

different edges. A graph which contains neither circles nor various edges is known as a 

straightforward graph.  
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