EXPERIMENTAL STUDY OF RECYCLED CONCRETE AS AGGREGATE FOR STRUCTURAL CONCRETE PRODUCTION

 ¹R.Praveen Kumar, M.Tech Scholar
² A. Belciya Mary Assistant Professor, Department of Civil Engineering,
PRIST University, Vallam, Thanjavur, India – 613403
<u>powerpraveen@gmail.com</u>, <u>²belciyaprist@gmail.com</u>

Abstract - Ferro-cement is a composite material composed of mortar reinforced with closely spaced steel rods and wire mesh layers. It is used to construct thin, hard surfaces and it can be cast in various shapes even without the use of formwork. Applications of Ferro cement have increased due to their properties such as toughness, water tightness, lightness and ductility. Due to the slenderness of these elements their performance under working loads may be affected. This experimental study describes the result of three different types of panels with varying number of wire mesh layers. The purpose of this experiment is to study the flexural behavior and the effect of folded panels as compared to flat and trough panels. From the studies, it is observed that the load carrying capacity, deformation of ultimate load and energy dissipation capacity are high in case of increasing number of wire mesh layers. Further it is observed that a reduction in crack width and increase in no of cracks indicates the delay in crack growth.

Key Words: Ferro-cement, crack strength, load deflection behavior

1. INTRODUCTION

Ferro cement, a composite material using cement, sand, water and wire mesh or galvanized steel rods, is an ideal technology for low cost construction in developing and under developed countries as well as rich countries like Singapore. It is a low cost material with excellent engineering properties and high cracking strength. Joseph Louis Lambton is considered as father of ferro-cement. He constructed boats, seats, and plant pots in 1855. Pier Luigi Nervi of Italy reinvented ferro-cement. Nervi first used ferro-cement in a public structure in 1948 which was an exposition hall at Turin with 100 m span roof. In 1976, International Ferro-cement Information Center was (IFIC) formed at Asian Institute of Technology (AIT) Bangkok. Ferro-cement is gaining popularity due to its adaptable use in construction and architecture. For developing countries with high demand of housing ferro-cement is a best alternative for conventional construction materials. A lot of research is going on to develop Ferro cement as a substitute material for various conventional construction materials such as bricks, stones, timber, steel, concrete.

2. METHODOLOGY

In this section we give the steps of preparing the ferro-cement concrete. The steps involved are:

- 1. Material collection
- 2. Preparation of mould for folded panels
- 3. Casting and curing of specimen
- 4. Testing

UGC Care Listed Journal

MATERIALS USED

Cement	: 53 grade
Sand	: M - SAND
Super plasticizer	: Conplast SP430
Water	
Skeletal steel	: mild steel 6mm dia
Wire mesh	: Galvanized Chicken and
wire mesh with a he	exagonal opening of size 12mm & thickness of 1.29 mm.

M- SAND -In recent years, considerable emphasis has been made by the experts in the construction industry to use Manufactured Sand (M-Sand) as River Sand resources are exhausting very rapidly. It has also been proved that Good quality M-sand can be used as an alternative construction material to River sand. There are two main reasons that M sand can be used as replaceable material for the river sand:

The shape of the m sand particles resembles with those of river sand particles. Flaky and elongated coarse particle are absent in m sand.

1. M sand is well graded and falls within the limits of grading zone II sand, grading limits specified in IS383 code. Table 1 gives the properties of M sand and table 2 gives the properties of cement

S.NO	Properties	Readings
1	Specific Gravity	2.60
2	Water absorption	20 %
3	Sieve Analysis	Under Zone II

Table -1: Properties of M- Sand

Table-2: Properties of cement

Specimen	Method of testing	Value
	Specific gravity	3.15
	Fineness modulus	2%
cement	Initial setting time	29 minutes
	Final setting time	600minutes
	Consistency	34%

Casting of control specimen- Cement mortar cubes of size70.6 mm \times 70.6 mm \times 70.6 mm are cast to test characterize the strength of the mortar mi

Cube specimen	C/S Ratio	W/C Ratio	Super Plasticizer (%)	Comp strength
1	1:3	0.3	• 1	43.50
2	1:2	0.3	1	48.25
3	1:1	0.3	1	51.16

Table-3: Mix Design of mortar cube

Geometry of the Specimens

The geometry of the panel is folded shape as shown with dimensions 1000 mm x 400 mm x 30. The panels are constructed using the conventional ferro-cement materials, which is composed of cement mortar and hexagonal wire mesh

Fig. 1. Ferro-cement slab with single layer wire mesh

Fig-2: Flat panel with mesh reinforcement

ISSN: 0474-9030 Vol-68-Issue-1 January-2020

Fig 3. Experimental setup

The geometry of the panel is flat shape as shown with dimensions 1000 mm x 400 mm x30mm

Table 4 -Experimental Results for Folded Ferro cement panels

Specimon ID	Cracking		Ultin	nate	Failure	
Specifien ID	Load (kN)	Def (mm)	Load (kN)	Def (mm)	Load (kN)	Def (mm)
FP-FD 01	9.5	3.2	21.5	10.6	17	20.4
FP-FD 02	10	3.5	28	16.7	18.5	26.2

COMPARISON OF EXPERIMENTAL AND THEORETICAL MOMENT VALUE Experimental calculation

Bending moment = Wl/4

Table 5 Comparison of moment value for folded Pan

Designation of	No of	Ultimate	Moment	%	
specimen	layers	load	Experimental	Theoretical	variation
FP-FD 01	1	21.5	7.16	14.52	0.49
FP-FD 02	2	28	9.33	14.52	0.64

Fig.4 Comparison of bending moment

Our Heritage UGC Care Listed Journal

Table 6 - Experimental Results for Flat Ferro-cement panels

	Cracking		Ulti	mate	Failure	
Specimen ID	Load	Def	Load	Def	Lood (kN)	Def
	(kN)	(mm)	(kN)	(mm)	Loau (KIN)	(mm)
FP-FT 01	1.4	2.4	2.3	32.6	2	45.6
FP-FT 02	2.2	15	3.4	34.5	2.8	48.6

Table 7- Comparison of moment value for folded panel

Designation	No of	Ultimate	Moment(k	%	
or specimen	layers	load	Experimental	Theoretical	variation
FP-FT 01	1	2.3	0.76	4.13	0.18
FP-FT 02	2	3.4	1.02	4.13	0.24

Graph 3 : comparison of experimental and theoretical bending moment for flat panels

Fig.6 Comparison of bending moment for flat panels

Fig.7. load deflection behavior

Table 8 -Experimental Results for Trough ferro-cement panels

Specimen	Cracking		Ultimate		Failure	
ID	Load kN	Def mm	load kN	Def mm	Load kN	Def mm
FP-TH 01	6.5	2.8	12	8	9.5	17.8
FP-TH 02	8.5	4.5	14.5	16.2	10.5	25

	Table 9- Con	iparison o	of moment	value f	or folded	panels
--	--------------	------------	-----------	---------	-----------	--------

Designation of	No of	Ultimate	Moment(Kn-mm)		%
specimen	layers	load	Experimental	Theoretical	variation
FP-FT 01	1	2.3	0.76	4.13	0.18
FP-FT 02	2	3.4	1.02	4.13	0.24

P a g Graph 5 : comparison of experimental and theoretical bending moment for trough panels

Fig.9 Comparison of theoretical pending moment

Fig.10 Load deflection behavior for trough panels

CONCLUSION

The following conclusions have been arrived from the present experimental study. In this paper, phase collection and study of literatures were done. This helps in knowing the properties of ferro-cement such as strength, toughness, water tightness, lightness, ductility and environmental stability. The initial test for materials was done and test results are presented. The entire test conducted in this phase are as per IS code. All the values that are obtained are within the permissible limits as per IS code.

REFERENCE

- [1] Abas, F. O., E. A. A. Ghafoor, M. U. Abass, and T. Kamil. "Re-Use of Waste Tires Rubber As Fine Aggregate Replacement."*International Jour¬-nal Engineering Science Research Techno¬ logy* 4, no. 3 (2015).
- [2] Koresh K.M, Mesfin Getahun Belachew (2014). "Study on waste tyre Rubber as Concrete Aggregates", IJSET International journal of scientific engineering and technology. Volume NO.3 pp : 433-436
- [3] N.Ganesan*, Dr.NVN. Nampoothiri (2011), "Studies on strength characteristics on utilization of waste materials as coarse aggregate in concrete". IJEST international journal of engineering science and technology pp : 5436-5440
- [4] O.Okafor (2010), "Performance of recycled asphalt pavement as coarse aggregate in concrete", Leonardo electronic journals of practices and technologies pp : 47-58
- [5] Siddiq R. and NaikT.R. "Properties of concrete contain scarp tyre rubber", waste management journal. Volume 24 pp : 563-569

Our Heritage

UGC Care Listed Journal

- [6] Pradeep and Dr. Arvind deva, "Analysis of compressive strength between conventional concrete and recycled coarse aggregate concrete", International journal of social science and research .vol 3 pp : 1-9
- [7] Ganapathi Naidu.P and Adiseshu, "Influence of coarse aggregate shape factors on bituminous mixtures", International journal of engineering research (IJERA). Vol 1 pp : 2013-2024